
1

© Cyber Analysis and Defense Department, Fraunhofer FKIE

@push_pnx

Code Cartographer’s Diary

2018-10-02 | One Conference, Den Haag
Daniel Plohmann

daniel.plohmann@fkie.fraunhofer.de

Steffen Enders
steffen.enders@tu-dortmund.de

Martin Clauß
martin.clauss@fkie.fraunhofer.de

Paul Hordiienko
pavlo.hordiienko@fkie.fraunhofer.de

Elmar Padilla
elmar.padilla@fkie.fraunhofer.de

2

© Cyber Analysis and Defense Department, Fraunhofer FKIE

The

Agenda

3

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Agenda

Overview: Malpedia

Motivation & Overview

Operationalizing

Malpedia

Windows API Usage

Recovery

& Analysis for

Malware Characterization

Tools: ApiScout

/ ApiVectors

Evaluation Results

Code-based

Similarity

Analysis

Tools: SMDA & MCRIT

Evaluation Outlook

Summary

4

© Cyber Analysis and Defense Department, Fraunhofer FKIE

5

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

What

is

Malpedia?

Curated
Malware

Collection

Malware
Identification

Context &
Attribution

Analysis of
Timelines

Code
Relationship

Signatures
(YARA)

Track Malware
Development

Meta
Information

Malware
Characteristics

Trends

Unpacked
Reference
Samples

Free &
Independent

Service

Vetted
Community

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/

6

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Statistics

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io
[3] https://www.botconf.eu/wp-content/uploads/2017/12/2017-DanielPlohmann-Malpedia.pdf

Launched

@ Botconf

12/2017 [3]

~800 users, 150 monthly

active

2000+ user

contributions

since

then

THX to „you

know

who

you

are“!! :)

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/
https://www.botconf.eu/wp-content/uploads/2017/12/2017-DanielPlohmann-Malpedia.pdf

7

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

What

does

it

look

like?

Alternatively:

Access through

REST API
or

git

clone

malpedia
to retrieve

all data

for
offline use

at once

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/

8

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Overview

Operationalizing

Malpedia

Identification

YARA

Search

/ Comparison

Label Provider (Clustering)

Contextualization

Publication

references

for

families, actors, …

QA / Regression Testing

Tools, Config

extractors, etc

[1] https://malpedia.caad.fkie.fraunhofer.de
[2] https://malpedia.io

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.io/

9

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Malpedia

Usage Example:

Windows API Usage Recovery &
Analysis for Malware

Characterization

10

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

Motivation

„(Windows) API interactions

are

an essential cornerstone

for

effective

reverse

engineering“

11

© Cyber Analysis and Defense Department, Fraunhofer FKIE

These are
pretty static offsets…
-> Build a database!

Windows API Usage

Recovery

Current

„State of the

Art“

12

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Recovery

Overview

Tool: ApiScout

[1]

Originally

presented

at Botconf, December

2017

Library for

painless

(Windows) API reconstruction

in known

environments

Idea: API function

offset

bruteforcing

based

on databases

Extension: ApiVectors

Compact representation

(bit

vector) indicating

the

presence

of relevant WinAPI

functions

Enables

fast assessment

of malware‘s

potential capabilities

Allows

similarity

analysis

based

on WinAPI

usage

characteristics

[1] https://github.com/danielplohmann/apiscout

https://github.com/danielplohmann/apiscout

13

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Accuracy

Evaluation:

Sample:
15 Windows Bins
5,367 API Imports

F‐Score: 0.995

Windows API Usage

Recovery

ApiScout

Methodology

14

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Across

702 families

(90 ignored

-> .net)

PE Imports:

From

PE Header

Import Table only

Dynamic

+ Cached:

LoadLibrary

/ GetProcAddress

ApiHashing

-> Custom

IAT

Obfuscation:

Custom

Jump

Table (Andromeda)

Offset-based

Hook

Avoidance

(Chthonic)

On-Demand

Table (Dridex)

Dynamic

Resolving

(Shifu)

Imports on Stack

/ Heap

(PIVY, Cryptowall)

XORed

Imports (Qadars)

[1] https://github.com/danielplohmann/apiscout

Covered

by

ApiScout

[1]

Windows API Usage

Recovery

WinAPI

Availability

for

Static

Analysis / Methods

of API Usage

https://github.com/danielplohmann/apiscout

15

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Occurrence

frequency

per Windows API function

Discounting

.NET and API-obfuscated

families

Only

3 API functions

> 90% (CloseHandle, Sleep, WriteFile)

Only

48 API functions

> 50%

API function

at position

150 appears

in 21.73%

4,392 (92.52%) of API functions

<= 10%

API compositions

are

highly

specific

per family

Good for

(identification) tools

like

ImpHash

[1]

ImpFuzzy

[2]

ApiVectors!

[1] https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
[2] http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html

Windows API Usage

Recovery

Occurrence

Frequency

of Individual

WinAPI

Functions

https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
http://blog.jpcert.or.jp/2017/03/malware-clustering-using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-.html

16

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Define: API Context

Groups

Manually

labelled

~4.500 APIs, primary

(12) and secondary

class

(115)

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

Semantic

Context

for

Windows API Functions

Kudos to Quoscient.io
for their contributions!

(Patrick Ventuzelo, Lukas Bernhard)

17

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Define: API Context

Groups

Reduce

this

set

to 1024 WinAPIs

(~80% hierarchy, ~20% based

on domain

knowledge)

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

WinAPI

Reference

Vector

18

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Define: API Context

Groups

Reduce

this

set

to 1024 WinAPIs

(~80% hierarchy, ~20% based

on domain

knowledge)

Vector yields

90% coverage

(mean) for

APIs

found

by

ApiScout

for

~600 malware

families

This

can

be

seen

as a 1024-bit vector!

Assumption:
Similar

sample, similar

vector?

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

Windows API Usage

Recovery

WinAPI

Reference

Vector

19

© Cyber Analysis and Defense Department, Fraunhofer FKIE

ApiScout

WinAPI

Reference

Vector

Visualize

Vectors:

Hilbert Curve

to ensure

neighboring

of contexts

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

20

© Cyber Analysis and Defense Department, Fraunhofer FKIE

ApiScout

WinAPI

Reference

Vector

Visualize

Vectors:

Hilbert Curve

to ensure

neighboring

of contexts

Execution

229

Memory

68

System

150

FileSystem

114

String

52

Network

192

Time

22

Registry

32

GUI

27

Device

66

Crypto

48

Other

24

System

636

Crypto

131

String

458

FileSystem

352

Execution

590

Network

387

Time

44

Memory

118

GUI

1392

Device

170

Other

127

Registry

80

21

© Cyber Analysis and Defense Department, Fraunhofer FKIE

ApiScout

WinAPI

Reference

Vector

Some

Examples

22

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Vector Construction

23

© Cyber Analysis and Defense Department, Fraunhofer FKIE

A42gA28KA13

CAAMA16BABAAJAECAxMAACkAAQUA7CJBCgAgUBA3

kQCBAHJSRjU^q‐*}_pb__N,__^?
A42gA28KA13

CAAMA16BABAAJAEAAxMAACkAAQUA7CJBCgAAUBA3

kQCBAHJSRjU^q‐*}_pL__N,._^?
A41BA29CA4IA9gCA9gA8Q BAAJAEAABMA3 gAAQA8 QJRCgAgUBAAHkQARCDIADDBGAqQAgCcGOIOp,f?

TeslaCrypt

2.2, 3.0, 4.2

Windows API Usage

Analysis

Comparison

of ApiVectors

v2.2 V3.0

V4.2

0.964

0.354 0.360

Example

Vectors

Base64-like encoding

(Run-Length

compressed) -

4-172 bytes

long

24

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Evaluation of Matching

Performance

Data

set: Malpedia

(2018-05-17)

673 families, 1854 samples

Comparison

with

ImpHash, ImpFuzzy

Mean

Fingerprint

sizes:

ImpHash: 32 bytes

ImpFuzzy: 54.4 bytes

ApiVector: 74.3 bytes

ApiVector: recoverable

info

Performance @ Thresholds

T: 0.18 –

90.18% TPR, 9.45% FPR

T: 0.22 –

89.10% TPR, 4.74% FPR

T: 0.32 –

86.55% TPR, 0.99% FPR

T: 0.55 –

80.72% TPR, 0.09% FPR

25

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Windows API Usage

Analysis

Evaluation of Matching

Performance

General Challenges

to API-based

similarity

analysis

Packers

.NET / scripts

Statically

linked

code

(MSVCRT, Delphi, Go, …)

26

© Cyber Analysis and Defense Department, Fraunhofer FKIE

ApiScout

available

on GitHub

[1]

Projects using

ApiScout:

Angad

[2] by

Ankur

Tyagi, presented

@ BsidesZurich

[3]

Master of Clusters by

Andrea Garavaglia

to be

presented

@ MISP Summit

/ hack.lu

[4]

Malpedia

:)

Ideally

used

as post-processing

for

sandboxing

Cuckoo

plugin?

Windows API Usage

Recovery

& Analysis

How

to operationalize

this?

[1] https://github.com/danielplohmann/apiscout
[2] https://github.com/7h3rAm/angad
[3] https://bsideszh.ch/agenda/abstracts/
[4] https://2018.hack.lu/misp-summit/

https://github.com/danielplohmann/apiscout
https://github.com/7h3rAm/angad
https://bsideszh.ch/agenda/abstracts/
https://2018.hack.lu/misp-summit/

27

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Malpedia

Usage Example:

Code-based Similarity Analysis

28

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

Motivation

Code Similarity

Analysis!!!

Identify

(3rd party) shared

library

code: automated

annotation

/ exclusion

from

analysis

scope

Isolate

code

that

is

immanent

to a given

code

base

/ author

Related

Work:

Kam1n0 [1] by

Stephen Ding et al.

FunctionSimSearch

[2] by

Thomas Dullien

et al.

CosaNostra

/ MalTindex

[3] by

Joxean

Koret

More…

[1] https://github.com/McGill-DMaS/Kam1n0-Community
[2] https://github.com/googleprojectzero/functionsimsearch
[3] https://github.com/joxeankoret/

https://github.com/McGill-DMaS/Kam1n0-Community
https://github.com/googleprojectzero/functionsimsearch
https://github.com/joxeankoret/

29

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

Overview

Tool: SMDA [2]

Work

in progress, already

silently

released

on GitHub

[2]

Built

on top

of Capstone

[1]

„SMDA is a minimalist

recursive disassembler

library that is optimized for accurate

Control Flow Graph (CFG) recovery from
memory dumps.”

Tool: MCRIT

„MinHash-based

Code Relationship

Identification

Toolkit“

Work

in progress, will be

released

later

this

year

[1] https://github.com/aquynh/capstone
[2] https://github.com/danielplohmann/smda

https://github.com/aquynh/capstone
https://github.com/danielplohmann/smda

30

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

SMDA

Malpedia

uses

memory

dumps

as normalization

Available

tools

(IDA, Binary

Ninja, radare2, …) not

suited

/ optimized

for

this

/home/pnx/smda

$ python3 analyze.py

citadel_dump_0x00140000

‐o citadel_disasm.json

now analyzing /home/pnx/citadel_dump_0x02390000
2018‐09‐24 11:30:57,299: smda.common.ApiResolver
‐

loaded 57315 exports from 134 DLLs (Windows XP Professional).

‐> 3.86s | 873

Func (status: ok)

/home/pnx/smda

$ cat citadel_disasm.json

{
"architecture": "intel",
"base_addr": 1310720,
"bitness": 32,
"execution_time": 3.86346,
"filename": “citadel_dump_0x00140000",
"message": "Analysis finished regularly.",
"sha256": "2c4166c81c31fd5de7fe205ea12c74d8bb394005337fa844afc23e4707a3d42f",
"status": "ok",
"summary": {
"num_api_calls": 1146,
"num_basic_blocks": 10686,
"num_disassembly_errors": 56,
"num_function_calls": 3979,
"num_functions": 873,
"num_instructions": 53324,
"num_leaf_functions": 114,
"num_recursive_functions": 7

},
"timestamp": "2018-09-24T09-31-01",
"version": "1.0.1",
"xcfg": {
"1318184": {
"apirefs": {},
"blockrefs": {},
"blocks": {
"1318184": [
[
1318184,
"55",
"push",
"ebp"

],
[…]

Example

results:
Method

FNC

BB

INS

TPR

Manual Reference: 793

10,264

52,121

99.99%

SMDA vs. dump:

873

10,686

53,324

98.36%

IDA vs. dump: 658

9,071

46,266

85.62%

IDA vs. clean unpacked: 788

10,209

51,794

99.37%

31

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MinHash

101

MinHashing

„Min-wise

independent permutations“

-

Locality

Sensitive Hashing

(LSH) scheme

[1]

Fast estimation

of set

similarity

(approximation

of Jaccard

similarity

coefficient)

Use

cases:

text documents

/ websites

(duplicates, plagiarism)

genome

sequencing

code

similarity! [2]

[1] “Min-wise independent permutations”. Broder et al., In: Proceedings of the 30th ACM Symposium on Theory of Computing (STOC '98), New York, NY, USA.
[2] “Binary Function Clustering using Semantic Hashes”. Jin et al., Carnegie Mellon University, 2012.

32

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MinHash

101

MinHash

procedure:

Extract

a range

of descriptive

features

(„shingles“) for

each

object

Hash

them

n times

(with

each

hash

function

seeded

differently)

Select

the

minimum

hash

value

for

each

of the

n groups

The

resulting

sequence

of n values

is

considered

as the

function‘s

fingerprint

Matching

fingerprints:

Given

two

fingerprints, count

the

number

of equal

fields

at same

positions

Various

optimizations:

Single-hash

XORing, Banding

or

n-key

sorting, b-bit

representation, …

33

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Simplified

example

with

a hash

function

that

maps

to a single

output

byte

(0-255)

Derive

shingles

such as Same shingles

for

all functions

Fingerprint

A: [
77,
67,
82,
73,
84,
32,
121,
97,
121,
33
]

Fingerprint

B : [
77,
99,
82,
73,
84,
45,
121,
97,
112,
33
]

Statistics:
„num_ins:33“
„num_blocks:4“
„num_calls:4“
…

Mnemonic

N-grams:
„push-mov-sub-push“
„mov-sub-push-xor“,
„sub-push-xor-push“,
…

Graphlets, …
Strings, …
Fuzzy

Abstractions, …
Fuzzy

Windowing, …

Statistics:
„num_ins:30“
„num_blocks:4“
„num_calls:4“
…

Mnemonic

N-grams:
„push-mov-sub-push“
„mov-sub-push-xor“,
„sub-push-xor-cmp“
…

Overlap: 7 / 10, Score: 0.7

34

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Small test data

set

(in-memory):

50 samples, 40 families

26,097 functions

with

20,611 indexable

(greater

or

equal

to 10 instructions

or

3 basic

blocks)

Application

of MCRIT

All function

pairs: 20,611 * 20,610 / 2 = 212,396,355

Filter candidates

down to 35,651 pairs

(using

banding)

This

results

in 19,732 matches

above

threshold

(0.7)

Indexing

+ Matching

takes

~2min on this

laptop

(i5, 8GB RAM).

Comparison: BinDiff

All samples

vs. each

other

(50*49/2 = 1,225 pairs)

Runtime: ~60min

BinDiff

Threshold 0.90 0.99

BinDiff

Matches 12,035 8,263

MCRIT Threshold 0.70 0.85

MCRIT Matches 19,732 11,648

MCRIT TPs 9,350 7,968

MCRIT TPR 0.7769 0.9643

MCRIT FPs

(?) 3,515 766

Preliminary Results!

35

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Malpedia

data

set

(mongodb):

2,403 samples, 773 families

1,927,361 functions

with

1,233,321 indexable

(greater

or

equal

to 10 instructions

or

3 basic

blocks)

Application

of MCRIT

All function

pairs: 1,233,321 * 1,233,320 / 2 = 760,539,727,860

Filter candidates

down to 63,694,525 pairs

(banding)

This

results

in 29,596,574 matches

above

threshold

(0.7)

Runtime

Indexing: 13,902 sec (03:51:42h) –

138,64 FNs/sec

Candidate

Identification: 6,380 sec (01:46:20h)

Matching: 31,840 sec (08:50:40h) –

1666,52 Pairs/sec

Basically, on this

laptop.

36

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Code-based

Similarity

Analysis

MCRIT

Next

steps

Improve

matching

quality

Tweak

/ verify

against

multiple ground

truth

data

sets

Goodware

/ libraries

with

different compilers

available

Make

it

usable

REST API

integrations

with

other

analysis

tools

(IDA, Binja, r2, …?)

Extensive evaluation

on Malpedia

data

set

Hosted

service

along

Malpedia?

37

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

38

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Summary

Code Cartographer‘s

Diary

The

Malpedia

Vision: A curated, free, high-quality

malware

corpus

for

research

Vetted

+ community-driven

Want Access?

Talk to me

(Know

Met Trust (KMT) -> ensures

K&M already)

Get

an invite

by

another

existing

member

that

can

vouch

for

you

Procedure

can

be

potentially

accelerated

based

on your

background

(GOV/LEA, …)

Windows API Usage

Recovery

& Analysis

ApiScout: Convenient

& reliable

WinAPI

usage

recovery

from

memory

dumps

ApiVectors: Compact representation, decent

matching

performance

Code-based

Similarity

Analysis

SMDA: Recursive

disassembler

(FOSS) optimized

for

memory

dumps

MCRIT: Code-based

similarity

analysis

has huge

potential

39

© Cyber Analysis and Defense Department, Fraunhofer FKIE

Thank You for Your Attention!

Daniel Plohmann

daniel.plohmann@fkie.fraunhofer.de
@push_pnx
@malpedia

	Foliennummer 1
	The�Agenda
	Agenda�
	Foliennummer 4
	Overview�What is Malpedia?
	Overview�Statistics
	Overview�What does it look like?
	Overview�Operationalizing Malpedia
	Malpedia Usage Example:�Windows API Usage Recovery & �Analysis for Malware Characterization
	Windows API Usage Recovery�Motivation
	Windows API Usage Recovery�Current „State of the Art“
	Windows API Usage Recovery�Overview
	Windows API Usage Recovery�ApiScout Methodology
	Windows API Usage Recovery�WinAPI Availability for Static Analysis / Methods of API Usage
	Windows API Usage Recovery�Occurrence Frequency of Individual WinAPI Functions
	Windows API Usage Recovery�Semantic Context for Windows API Functions
	Windows API Usage Recovery�WinAPI Reference Vector
	Windows API Usage Recovery�WinAPI Reference Vector
	ApiScout�WinAPI Reference Vector
	ApiScout�WinAPI Reference Vector
	ApiScout�WinAPI Reference Vector
	Windows API Usage Analysis�Vector Construction
	Windows API Usage Analysis�Comparison of ApiVectors
	Windows API Usage Analysis�Evaluation of Matching Performance
	Windows API Usage Analysis�Evaluation of Matching Performance
	Windows API Usage Recovery & Analysis�How to operationalize this?
	Malpedia Usage Example:�Code-based Similarity Analysis
	Code-based Similarity Analysis�Motivation
	Code-based Similarity Analysis�Overview
	Code-based Similarity Analysis�SMDA
	Code-based Similarity Analysis�MinHash 101
	Code-based Similarity Analysis�MinHash 101
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT
	Code-based Similarity Analysis�MCRIT
	�Summary
	Summary�Code Cartographer‘s Diary
	�Thank You for Your Attention!

